\qquad
\qquad Date \qquad

Unit 9-Quadratics Review

1. Given: $f(x)=x^{2}-2 x-8$
a) Find the roots of the given equation algebraically
b) Graph of the equation.

c) Find:

- Turning Point \qquad
- Roots \qquad
- Axis of Symmetry \qquad
- y - intercept \qquad
- Domain \qquad
- Range \qquad
- Vertex form \qquad
- State the increasing interval graphed \qquad
- State the decreasing interval graphed \qquad

2. Directions: Answer the following questions based on this graph of a parabola:
a) Write the equation for the axis of symmetry.
b) Identify the x-intercepts.
c) Identify the y-intercept.
c) Write the quadratic equation of this graph:

In standard form: \qquad In vertex form: \qquad
3. Find the vertex of $f(x)=-x^{2}-4 x+9$ ALGEBRAICALLY.
4. Describe how you know by looking at the equation of a quadratic function whether the graph will open upward or downward?
5. American astronauts working on a space station on the moon toss a ball into the air. The height of the ball is represented by the equation $y=-2.7 x^{2}+13.5 x+14$ where x represents the number of seconds since the ball was thrown and y represents the height of the ball in feet. Determine the height of the ball after 2 seconds. Show how you arrived at your answer.
6. Given the quadratic equation: $x^{2}-k x-16=0$, where -2 is one solution.
a) Find the value of k
b) Find the missing root
7. Write the quadratic equation in vertex form by completing the square. Then, identify the quadratic equation's turning point. $f(x)=x^{2}-2 x+8$
8. Write the quadratic equation in vertex form by completing the square. Then, identify the quadratic equation's turning point. $f(x)=2 x^{2}+36 x+170$
9. The populations of two different villages are modeled by the equations shown below. The population (in thousands) is represented by y and the number of years since 1975 is represented by x. Lewiston village is represent by $f(x)=x^{2}-30 x+540$ Lockport village is represent by $g(x)=20 x+15$
a. Algebraically, determine which year did the villages have the same population?
b. Algebraically, determine what was the population of both cities during the year of equal population?
10. If $(x-7)$ is a factor of $2 x^{2}-11 x+k$, what is the value of k ?
(1) -21
(2) -7
(3) 7
(4) 28
11. The height, h, of a golf ball hit into the air can be represented by the equation $h=-16 t^{2}+48 t$, where t is the elapsed time.
a) Graph $h=-16 t^{2}+48 t$
b) At what time is the ball at its highest point?
c) Write the equation of the axis of symmetry.

d) Domain
e) Range \qquad
f) State the increasing interval graphed \qquad
g) State the decreasing interval graphed \qquad
12. What is the solution of the system of equations shown below?

$$
\begin{gathered}
f(x)=x-2 \\
g(x)=x^{2}-8 x+6
\end{gathered}
$$

(1) $(-1,-3)$ and $(-8,-10)$
(2) $(2,0)$ and $(-8,-10)$
(3) $(0,-2)$ and $(5,3$
(4) $(1,-1)$ and $(8,6)$
13. Which of the following equations is equivalent to $x^{2}+14 x-14=0$
(1) $(x+7)^{2}=14$
(2) $(x+7)^{2}=63$
(3) $(x+14)^{2}=14$
(4) $(x+14)^{2}=63$
14. What are the vertex and axis of symmetry of the parabola $y=x^{2}-16 x+63$?
(1) vertex: ($8,-1$); axis of symmetry: $x=8$
(3) vertex: $(-8,-1)$; axis of symmetry: $x=-8$
(2) vertex: $(8,1)$; axis of symmetry: $x=8$
(4) vertex: $(-8,1)$; axis of symmetry: $x=-8$
15. Let f be the function represented by the graph below.

Let g be a function such that $g(x)=-\frac{1}{2} x^{2}+4 x+3$. Determine which function has the larger maximum value. Justify your answer. (hint: find the maximum for $g(x)$ algebraically)
16. Which sketch is the correct graph for the function $y=x^{2}-5 x-6$?

(1)

(2)

(3)

(4)
17. Each time Juanita bowls, her score increases by 5% of her previous score. If her initial score is represented by a, which equations shows this relationship?
a) $y=a(1.5)^{x}$
b) $y=a(1.05)^{x}$
c) $y=0.05^{x}$
d) $y=a(0.5)^{x}$
18. Ryan is given the graph of the function $y=\frac{1}{2} x^{2}-4$. He wants to find the zeros of the function, but is unable to read them exactly from the graph.
a) Find the zeros in simplest radical form.
(hint: use a specific formula)

19. What is the slope and y intercept of: $x-3 y=-15$?
20. What is the order, from narrowest to widest graph, of the quadratic function $f(x)=-10 x^{2}, f(x)=2 x^{2}$, and $f(x)=0.5 x^{2}$?
(1) $f(x)=-10 x^{2}, f(x)=2 x^{2}$, and $f(x)=0.5 x^{2}$
(3) $f(x)=0.5 x^{2}, f(x)=2 x^{2}$, and $f(x)=-10 x^{2}$
(2) $f(x)=2 x^{2}, f(x)=-10 x^{2}$, and $f(x)=0.5 x^{2}$
(4) $f(x)=0.5 x^{2}, f(x)=-10 x^{2}$, and $f(x)=2 x^{2}$
21. Joey's math class is studying the basic quadratic function, $f(x)=x^{2}$. Each student is supposed to make two new functions by adding or subtracting a constant to the function. Joey chooses the functions $g(x)=x^{2}-5$ and $h(x)=x^{2}+2$. What transformations would map $f(x)$ to $g(x)$ and $f(x)$ to $h(x)$?
(1) shift left 5 , shift right 2
(3) shift up 5 , shift down 2
(2) shift right 5 , shift left 2
(4) shift down 5 , shift up 2
22. What is the difference when $2 x^{3}+x-5$ is subtracted from $6 x^{3}-x^{2}+4 x+8$?

