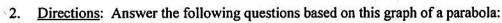
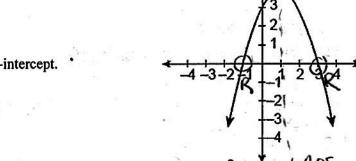

Unit 10-Quadratics Review

1. Given: $f(x) = x^2 - 2x - 8$


r) Find the roots of the given equation algebraically

b) Graph of the equation.


- -ು) Find:
 - Turning Point $\left(-\frac{Q}{Q} \right)$
 - · Roots 22,45
 - Axis of Symmetry X = |
 - · y-intercept -8 (c value)
 - · Domain XX X € TRE
 - Range 84 43-98
 - Vertex form $y = (x-1)^2 9$
 - State the increasing interval graphed (),
 - State the decreasing interval graphed († の,))

a) Write the equation for the axis of symmetry.

b) Identify the x-intercepts.

c) Identify the y-intercept.

c) Write the quadratic equation of this graph:

In standard form:
$$U = -x + 2x + 3$$

3. Find the vertex of $f(x) = -x^2 - 4x + 9$ ALGEBRAICALLY.

$$X = \frac{-b}{2a} \left[x = -2 \right]$$

$$X = -(-4)$$

$$A = -(-4)$$

$$X = 4$$

$$y = -(-2)^{2} - 4(-2) + 9$$

$$y = -4 + 8 + 9$$


$$y = 13$$

$$y = 13$$

4. Describe how you know by looking at the equation of a quadratic function whether the graph will open upward or downward?

The graph will be opening downward blc the @ in Front of x2 (a value is negative

	American astronauts working on a space station on the moon toss a ball into the air. The height of the ball is
	represented by the equation $y = -2.7x^2 + 13.5x + 14$ where x represents the number of seconds since the ball was
	thrown and y represents the height of the ball in feet. Determine the height of the ball after 2 seconds. Show how you arrived at your answer.

- 6. Given the quadratic equation: $x^2 kx 16 = 0$, where -2 is one solution.
 - a) Find the value of k
 - b) Find the missing root

a)
$$(-2)^{2} - K(-3)^{2} - 16 = 0$$

$$4 + 2K - 16 = 0$$

$$2K - 12 = 0$$

$$+ 12 + 12$$

$$2K = 12 | K = 6 | Other roots$$

7. Write the quadratic equation in vertex form by completing the square. Then, identify the quadratic equation's turning point. $f(x) = x^2 - 2x + 8$

point.
$$f(x) = x^2 - 2x + 8$$

$$F(x) = x^2 - \lambda + 8$$

$$-8 - 8$$

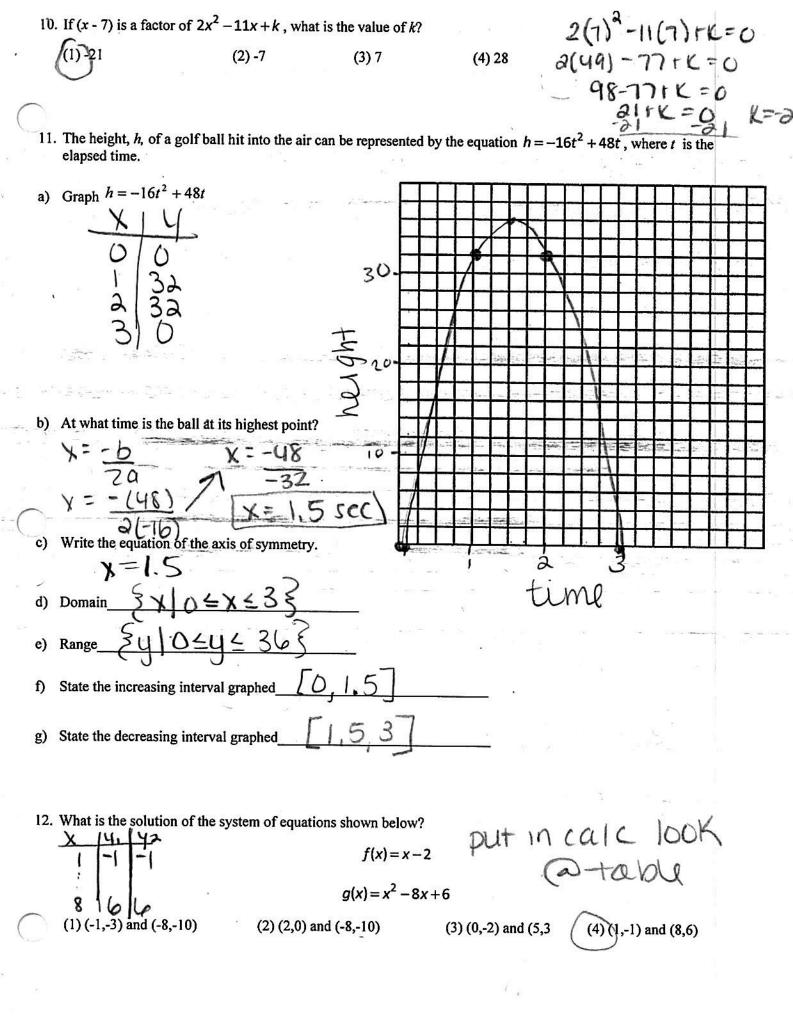
$$F(x) - 8 = x^2 - \lambda x$$

$$f(x)-8+[]=x^2-3x+[]$$

8. Write the quadratic equation in vertex form by completing the square. Then, identify the quadratic equation's turning point. $f(x) = 2x^2 + 36x + 170$

$$\frac{1}{2} = \chi^2 + 18\chi + 85$$

$$\frac{3}{(1)} - 85 = x^2 + 18x$$


$$\frac{f(x)}{2} - 4 = (x+9)^2 + 4$$

9. The populations of two different villages are modeled by the equations shown below. The population (in thousands) is represented by y and the number of years since 1975 is represented by x. Lewiston village is represent by $f(x) = x^2 - 30x + 540$ Lockport village is represent by g(x) = 20x + 15

a. Algebraically, determine which year did the villages have the same population?

$$\chi^2 - 30x + 540 = 20x + 15$$

 $-20x - 15 - 20x + 15$
 $\chi^2 - 50x + 525 = 0$
 $(x-35)(x-15)$

b. Algebraically, determine what was the population of both cities during the year of equal population?

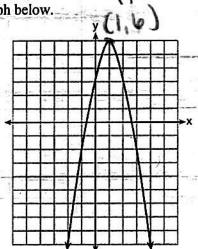
(1)
$$(x+7)^2 = 14$$

$$(2)(x+7)^2=63$$

$$(3) (x+14)^2 = 14$$

$$(4) (x+14)^2 = 63$$

14. What are the vertex and axis of symmetry of the parabola y

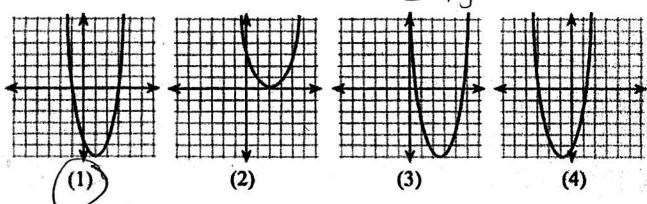

(1) yertex:
$$(8,-1)$$
; axis of symmetry: $x = 8$

(3) vertex:
$$(-8, -1)$$
; axis of symmetry: $x = -8$

(2) vertex: (8, 1); axis of symmetry:
$$x = 8$$

(4) vertex: (-8, 1); axis of symmetry:
$$x = -8$$

15. Let f be the function represented by the graph below.



Let g be a function such that $g(x) = -\frac{1}{2}x^2 + 4x + 3$. Determine which function has the larger maximum value. Justify your answer. (hint: find the maximum for g(x) algebraically)

$$9(x) = 1)$$

g(x) has larger maximu

16. Which sketch is the correct graph for the function $y = x^2 - 5x - 6$?

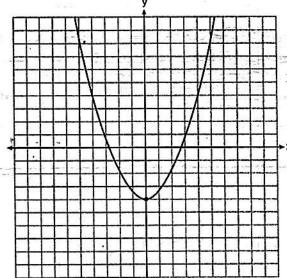
17. Each time Juanita bowls, her score increases by 5% of her previous score. If her initial score is represented by a, which equations shows this relationship?

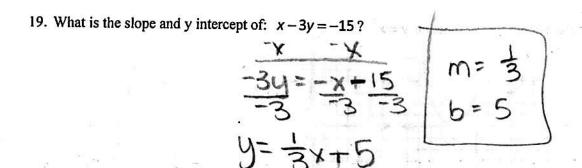
a)
$$y = a(1.5)^x$$

(b)
$$y = a(1.05)^x$$

c)
$$y = 0.05^x$$

d)
$$y = a(0.5)^x$$


$$(1+r)$$


5)^x c)
$$y = 0.05^x$$
 d) $y = a(0.5)^x$ $(1+r)$. $0.5 = 51$.

18. Ryan is given the graph of the function $y = \frac{1}{2}x^2 - 4$. He wants to find the zeros of the function, but is unable to read them exactly from the graph.

a) Find the zeros in simplest radical form. (hint: use a specific formula)

a)
$$x = -b \pm \sqrt{b^a - 4ac}$$

20. What is the order, from narrowest to widest graph, of the quadratic function
$$f(x) = -10x^2$$
, $f(x) = 2x^2$, and $f(x) = 0.5x^2$?

$$f(x) = -10x^2, f(x) = 2x^2, \text{ and } f(x) = 0.5x^2$$
(3) $f(x) = 0.5x^2, f(x) = 2x^2, \text{ and } f(x) = -10x^2$

(3)
$$f(x) = 0.5x^2, f(x) = 2x^2, \text{ and } f(x) = -10x^2$$

(2)
$$f(x) = 2x^2$$
, $f(x) = -10x^2$, and $f(x) = 0.5x^2$ (4) $f(x) = 0.5x^2$, $f(x) = -10x^2$, and $f(x) = 2x^2$

$$^{(4)} f(x) = 0.5x^2, f(x) = -10x^2, \text{ and } f(x) = 2x^2$$

- 21. Joey's math class is studying the basic quadratic function, $f(x) = x^2$. Each student is supposed to make two new functions by adding or subtracting a constant to the function. Joey chooses the functions $g(x) = x^2 - 5$ and $h(x) = x^2 + 2$. What transformations would map f(x) to g(x) and f(x) to h(x)?
 - (1) shift left 5, shift right 2
- (3) shift up 5, shift down 2
- (2) shift right 5, shift left 2
- (4) shift down 5, shift up 2

22. What is the difference when $2x^3 + x - 5$ is subtracted from $6x^3 - x^2 + 4x + 8$?