Name: \qquad Date:
UNIT 9

LESSON 4

Do Now:
a. If one root of the equation $x^{2}+k x-15=0$ is -3 , what is the other root?
b. Using your calculator, find the axis of symmetry and the turning point of $f(x)=x^{2}+4 x-21$.

AIM: FINDING THE AXIS OF SYMMETRY AND TURNING POINT ALGEBRAICALLY

Other words for turning point: \qquad
Directions: Find the turning point algebraically.

1. $g(x)=x^{2}+4 x-21$

Step 1: Identify the a-value \& b-value
Step 2: Use the axis of symmetry formula:

$$
x=\frac{-b}{2 a}
$$

Step 3: Plug the x-value into the given equation to find the y-value.
$y=a x^{2}+b x+c$
Step 4: Write your answer as coordinates.

Step 5: Check your answer with the table/graph on the calculator
2. Find the vertex algebraically. $h(x)=-x^{2}-10 x+24$

Step 1: Identify the a-value \& b-value
Step 2: Use the axis of symmetry formula:

$$
x=\frac{-b}{2 a}
$$

Step 3: Plug the x -value into the given equation to find the y -value.
$y=a x^{2}+b x+c$
Step 4: Write your answer as coordinates.

Step 5: Check your answer with the table/graph on the calculator
3. Find the minimum point algebraically: $a(x)=x^{2}+6 x-27$

Step 1: Identify the a-value \& b-value
Step 2: Use the axis of symmetry formula:

$$
x=\frac{-b}{2 a}
$$

Step 3: Plug the x-value into the given equation to find the y-value.
$y=a x^{2}+b x+c$
Step 4: Write your answer as coordinates.

Step 5: Check your answer with the table/graph on the calculator
4. Find the vertex algebraically: $b(x)=x^{2}+8 x+16$

Step 1: Identify the a-value \& b-value
Step 2: Use the axis of symmetry formula:

$$
x=\frac{-b}{2 a}
$$

Step 3: Plug the x-value into the given equation to find the y-value.
$y=a x^{2}+b x+c$

Step 4: Write your answer as coordinates.

Step 5: Check your answer with the table/graph on the calculator
5) Write the quadratic equation given the graph below.

6) If -1 and 7 are the roots of the quadratic equation $x^{2}+k x-7=0$, find the value of k.

