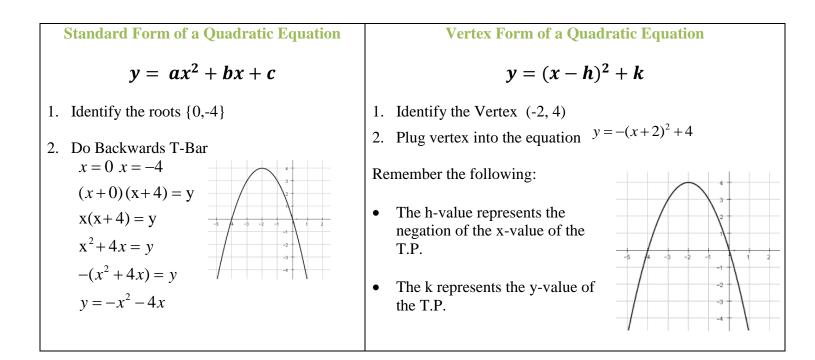


- **<u>Roots</u>** -where the parabola crosses the x axis
- <u>Vertex/ Turning Point</u>- where the parabola begins to change direction
- <u>Maximum/Minimum</u>-represents the vertex
- <u>Axis of Symmetry</u>- where the parabola could be "folded" in half Equation is x= (x-value of T.P)


Formula for axis of symmetry x

$$x = \frac{-b}{2a}$$

Steps to Using the Calculator When Looking for the Roots

When Looking For The	When Looking For The
LEFT ROOT:	Right ROOT:
Y = Type in the given equation	Y = type in the given equation
2^{nd} Trace – select #2 (zero)	2^{nd} Trace – select #2 (zero)
Go Above the x-axis, press ENTER	Go BELOW the x-axis, press
	ENTER
Go BELOW the x-axis, press	Go ABOVE the x-axis, press
ENTER	ENTER
Press ENTER	Press Enter
Root values will appear	Root values will appear

Axis of Symmetry

Algebraically Determining the Axis of	Graphically Identifying the Axis of Symmetry:
Symmetry	
$y = x^2 - 4x + 1$	• A vertical line that divides the parabola into two symmetric halves.
Identify the a, b, and c value from the equation	
	• Where the parabola could be "folded" to produce
$a = 1, \qquad b = -4, c = 1$	symmetry.
Use the axis of symmetry formula to solve for x:	• Always an $x = #$.
	• The x-value of the T.P./Vertex.
$x = \frac{-b}{2a}$	
$x = \frac{-(-4)}{2}$	
$x = \frac{1}{2(1)}$	(2,3)
x = 2	

TURNING POINT / VERTEX / MINIMUM POINT / MAXIMUM POINT

Algebraically Solving for the Vertex of a Quadratic	Graphically Solving for the Vertex a Quadratic Function
Function	$\frac{y}{y} = x^2 - 4x - 5$
Given: $y = x^2 - 4x - 5$	y - x + ix + b
	Step 1: Type equation into "y =" into calculator
Identify the a-value, b-value & c-value.	Step 2: Press 2 nd trace
a = 1, b = -4, c = -5	Step 3: Choose #3 (minimum) or #4 (Maximum)
	Step 4: Place blinky man to the left of the TP/vertex, press
Step 1: Use the axis of symmetry formula:	enter
	Step 5: Place blinky man to the right of the TP/vertex,
-b	press enter
$x = \frac{-b}{2a}$	Step 6: Press enter to get the turning point
$x = \frac{-(-4)}{2(1)}$ $x = 2$ Step 2: Plug the x-value into the given equation to find the y-value. $y = x^2 - 4x - 5$ $y = (2)^2 - 4(2) - 5$ $y = -9$ Step 3: Write your answer as coordinates (2, -9)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Step 3: Write your answer as coordinates. $(2, -9)$ Step 4: Check your answer with the table/graph on the calculator	

Given:
$$y = x^2 - 8x + 11$$

Step 1: Move the constant ("c" value) to the right side.

$$y = x^{2} - 8x + 11$$

-11 -11
 $y - 11 = x^{2} - 8x$

Step 2: Take half of the "b" value and square it and add it to BOTH sides.

$$b = \frac{-8}{2} = (-4)^2 = 16$$
$$y - 11 + 16 = x^2 - 8x + 16$$

Step 3: Make the left side a perfect square trinomial.

$$y + 5 = x^2 - 8x + 16$$

Step 4: Factor the perfect square trinomial and simplify the right side.

$$y+5 = (x-4)(x-4)$$

 $y+5 = (x-4)^2$

Remember, you don't need to show this step, you can skip down to the line right below

7

Step 5: Solve for y

$$y+5 = (x-4)^{2}$$

-5 -5
$$y = (x-4)^{2} - 5$$

Step 6: Write in vertex form $y = (x - h)^2 + k$

Step 7: Identify the turning point (h, k): (4, -5)