Unit 9- Graphing Quadratics

Standard Form: $\quad y=a x^{2}+b x+c$

This parabola opens down and can be classified as concave down.
 All parabolas that open down will have a negative "a" value.

The vertex is the highest point or the maximum point.

- Roots -where the parabola crosses the x-axis
- Vertex/ Turning Point- where the parabola begins to change direction
- Maximum/Minimum-represents the vertex
- Axis of Symmetry- where the parabola could be "folded" in half

$$
\text { Formula for axis of symmetry } \quad x=\frac{-b}{2 a}
$$

Graphically find the roots

- Where the graph crosses the x -axis
- Where the y-value is 0 .
- Can be written as $\{-6,3\}$

TABLE: Look for y-value $=0$

\mathbf{x}	\mathbf{y}
$\mathbf{- 1}$	$\mathbf{0}$
0	-5
1	-8
2	-9
3	-8
4	-5
$\mathbf{5}$	$\mathbf{0}$

Steps to Using the Calculator When Looking for the Roots

When Looking For The LEFT ROOT:	When Looking For The Right ROOT:
Y = Type in the given equation	Y = type in the given equation
$2^{\text {nd }}$ Trace - select \#2 (zero)	$2^{\text {nd }}$ Trace - select \#2 (zero)
Go Above the x-axis, press ENTER	Go BELOW the x-axis, press ENTER
Go BELOW the x-axis, press ENTER	Go ABOVE the x-axis, press ENTER
Press ENTER	Press Enter
Root values will appear	Root values will appear

Standard Form of a Quadratic Equation

$$
y=a x^{2}+b x+c
$$

1. Identify the roots $\{0,-4\}$
2. Do Backwards T-Bar
$x=0 \quad x=-4$
$(x+0)(x+4)=y$
$\mathrm{x}(\mathrm{x}+4)=\mathrm{y}$
$\mathrm{x}^{2}+4 x=y$
$-\left(x^{2}+4 x\right)=y$

$y=-x^{2}-4 x$

$$
\begin{aligned}
& \text { Vertex Form of a Quadratic Equation } \\
& \qquad \boldsymbol{y}=(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}
\end{aligned}
$$

1. Identify the Vertex $(-2,4)$
2. Plug vertex into the equation $y=-(x+2)^{2}+4$

Remember the following:

- The h-value represents the negation of the x-value of the T.P.
- The k represents the y -value of the T.P.

Algebraically Determining the Axis of Symmetry

$$
y=x^{2}-4 x+1
$$

Identify the a, b, and c value from the equation

$$
\mathrm{a}=1, \quad \mathrm{~b}=-4, \quad \mathrm{c}=1
$$

Use the axis of symmetry formula to solve for x :

$$
\begin{aligned}
& x=\frac{-b}{2 a} \\
& x=\frac{-(-4)}{2(1)} \\
& x=2
\end{aligned}
$$

Graphically Identifying the Axis of Symmetry:

- A vertical line that divides the parabola into two symmetric halves.
- Where the parabola could be "folded" to nroduce symmetry.
- Always an $x=\#$.
- The x -value of the T.P./Vertex.

TURNING POINT / VERTEX / MINIMUM POINT / MAXIMUM POINT

Algebraically Solving for the Vertex of a Quadratic Function
Given: $y=x^{2}-4 x-5$
Identify the a -value, b -value $\& \mathrm{c}$-value.

$$
\mathrm{a}=1, \quad \mathrm{~b}=-4, \quad \mathrm{c}=-5
$$

Step 1: Use the axis of symmetry formula:

$$
\begin{aligned}
& x=\frac{-b}{2 a} \\
& x=\frac{-(-4)}{2(1)} \\
& x=2
\end{aligned}
$$

Step 2: Plug the x -value into the given equation to find the y value.

$$
\begin{aligned}
& y=x^{2}-4 x-5 \\
& y=(2)^{2}-4(2)-5 \\
& y=-9
\end{aligned}
$$

Step 3: Write your answer as coordinates. $(2,-9)$
Step 4: Check your answer with the table/graph on the calculator

Graphically Solving for the Vertex a Quadratic Function

$$
y=x^{2}-4 x-5
$$

Step 1: Type equation into " $y=$ " into calculator
Step 2: Press $2^{\text {nd }}$ trace
Step 3: Choose \#3 (minimum) or \#4 (Maximum)
Step 4: Place blinky man to the left of the TP/vertex, press enter
Step 5: Place blinky man to the right of the TP/vertex, press enter
Step 6: Press enter to get the turning point

\mathbf{x}	\mathbf{Y}
-1	0
0	-5
1	-8
2	-9
3	-8
4	-5
5	0

\longleftarrow

COMPLETEING THE SQUARE TO FIND QUADRATIC EQUATION IN VERTEX FORM

$$
\text { Given: } y=x^{2}-8 x+11
$$

Step 1: Move the constant ("c" value) to the right side.

$$
\begin{aligned}
& y=x^{2}-8 x+11 \\
& -11 \quad-11 \\
& y-11=x^{2}-8 x
\end{aligned}
$$

Step 2: Take half of the "b" value and square it and add it to BOTH sides.

$$
\begin{gathered}
b=\frac{-8}{2}=(-4)^{2}=16 \\
y-11+16=x^{2}-8 x+16
\end{gathered}
$$

Step 3: Make the left side a perfect square trinomial.

$$
y+5=x^{2}-8 x+16
$$

Step 4: Factor the perfect square trinomial and simplify the right side.

$$
\begin{aligned}
& y+5=(x-4)(x-4) \\
& y+5=(x-4)^{2}
\end{aligned}
$$

Remember, you don't need to show this step, you can skip down to the line right below

Step 5: Solve for y

$$
\begin{gathered}
y+5=(x-4)^{2} \\
-5 \quad-5 \\
y=(x-4)^{2}-5
\end{gathered}
$$

Step 6: Write in vertex form $y=(x-h)^{2}+k$

Step 7: Identify the turning point $(h, k):(4,-5)$

