
## Name:\_\_\_\_\_ UNIT 8

## Date:\_\_\_\_\_ LESSON 7

**DO NOW:** The graph of the function  $f(x) = ax^2 + bx + c$  is given below. Could the factors of f(x) be (x + 2) and (x - 3)? Based on the graph, explain why or why *not*.



## AIM: COMPLETING THE SQUARE (a = 1) (Day 2)

1. Find the exact roots of  $x^2 + 10x - 8 = 0$  by completing the square.

Simplest radical form: \_\_\_\_\_

To the nearest hundredth: \_\_\_\_\_

2. Solve the equation  $x^2 - 6x = 15$  by completing the square.

Simplest radical form: \_\_\_\_\_

To the nearest tenth: \_\_\_\_\_

- 3. Which step can be used when solving  $x^2 6x 25 = 0$  by completing the square?
- 1)  $x^2 6x + 9 = 25 + 9$
- 2)  $x^2 6x 9 = 25 9$
- 3)  $x^2 6x + 36 = 25 + 36$
- 4)  $x^2 6x 36 = 25 36$

- 4. When solving the equation  $x^2 8x 7 = 0$  by completing the square, which equation is a step in the process?
- 1)  $(x-4)^2 = 9$
- 2)  $(x-4)^2 = 23$
- 3)  $(x-8)^2 = 9$
- 4)  $(x-8)^2 = 23$

- 5. If  $x^2 + 2 = 6x$  is solved by completing the square, an intermediate step would be
- 1)  $(x+3)^2 = 7$
- 2)  $(x-3)^2 = 7$
- 3)  $(x-3)^2 = 11$
- 4)  $(x-6)^2 = 34$

- 6. If  $x^2 = 12x 7$  is solved by completing the square, one of the steps in the process is
- 1)  $(x-6)^2 = -43$
- 2)  $(x+6)^2 = -43$
- 3)  $(x-6)^2 = 29$
- 4)  $(x+6)^2 = 29$

7. Find the exact roots of  $x^2 - 4x - 9 = 0$  by completing the square.

Simplest radical form: \_\_\_\_\_

To the nearest hundredth: \_\_\_\_\_

| Name:    |
|----------|
| TINITT O |

## UNIT 8

Date:\_ **LESSON 7** 

HW#\_

1) Solve for the zeros by completing the square in *simplest radical form* and round decimals to the nearest tenth.

|    | Completing the Square |
|----|-----------------------|
| a) | $x^2 + 4x - 1 = 0$    |

b)  $\frac{Completing the Square}{x^2 - 6x - 25 = 0}$ 

| Simplest radical form: |
|------------------------|
| To the nearest tenth:  |
|                        |

Don't forget Textbook Homework!