UNIT 6B - STUDY GUIDE - PIECEWISE FUNCTIONS

Piecewise Linear Function- is a function defined by at least two equations ("pieces"), each of which applies to a different part of the domain

$$
\boldsymbol{f}(\boldsymbol{x})=\left\{\begin{array}{c}
2 x-5 \text { if }-\mathbf{6} \leq \boldsymbol{x}<-\mathbf{1} \\
x-2 \text { if }-\mathbf{1} \leq \boldsymbol{x}<\mathbf{3} \\
4 \text { if } \boldsymbol{x} \geq \mathbf{3}
\end{array}\right.
$$

$f(x)=4$ if $x \geq 3$

Closed circle | \mathbf{x} | \mathbf{y} |
| :---: | :---: |
| | 3 |
| | 3 |
| | 4 |
| | 3 |
| 5 | 3 |
| 6 | 3 |
| 7 | 3 |
| 8 | 3 |

A Step Function- is a type of piece-wise linear functions which resembles sets of stair steps. A step function (or staircase function) is a piecewise function containing all constant "pieces".

$$
f(x)=\left\{\begin{array}{cc}
-3 ; & x<-2 \\
0 ; & -2 \leq x \leq 1 \\
3 ; & x>1
\end{array}\right.
$$

TRANSFORMATION RULES

Translation (Shift) Rules for $\boldsymbol{f}(\mathbf{x})$ graph	
$f(x)+\mathrm{k}$	Up k units
$f(x)-\mathrm{k}$	Down k units
$f(x+\mathrm{h})$	Left h units
$f(x-\mathrm{h})$	Right h units

Dilation Rules for $f(\mathbf{x})$ graph	
$a f(x)$ when $\mathrm{a}>1$	Narrower-Stretched Vertically
$a f(x)$ when $0<\mathrm{a}<1$	Wider-Stretched Horizontally

Reflection Rules for $\boldsymbol{f}(\mathbf{x})$ graph	
$-f(x)$	Reflection in the x -axis
$f(-x)$	Reflection in the y -axis

Step 1	Press the Y= Key
Step 2	Enter the $1^{\text {st }}$ equation into Y1
Step 3	Enter the $2^{\text {nd }}$ equation into Y2
Step 4	$2^{\text {nd }}$ Trace (Calc menu)
Step 5	Press the \#5 key(intersect)
Step 6	- Use left \& right arrows to get close to the P.O.I. - Hit enter three times.
Step 7	- Repeat Steps 4,5 \& 6 to determine the $2^{\text {nd }}$ P.O.I. - The P.O.I's (solutions) should be written in (x, y) form.

Calculator strategy: You can also check the table of values to see if any points are in common. Look for the same y-values. This will only work for integers \& not decimals.

