UNIT 6B - STUDY GUIDE – PIECEWISE FUNCTIONS

<u>Piecewise Linear Function</u>- is a function defined by at least two equations ("pieces"), each of which applies to a different part of the domain f(x)

<u>A Step Function-</u> is a type of piece-wise linear functions which resembles sets of stair steps. A step function (or staircase function) is a piecewise function containing all constant "pieces".

$$f(x) = \begin{cases} -3; & x < -2\\ 0; & -2 \le x \le 1\\ 3; & x > 1 \end{cases}$$

TRANSFORMATION RULES

Translation (Shift) Rules for <i>f</i> (x) graph		
f(x) + k	Up k units	
f(x) - k	Down k units	
f(x+h)	Left h units	
<i>f</i> (x - h)	Right h units	

Dilation Rules for <i>f</i> (x) graph	
af(x) when $a > 1$	Narrower-Stretched Vertically
af(x) when $0 < a < 1$	Wider-Stretched Horizontally

Reflection Rules for <i>f</i> (x) graph	
-f(x)	Reflection in the x-axis
<i>f</i> (- <i>x</i>)	Reflection in the y-axis

Calculator Steps to Determine the Point(s) Of Intersection

Step 1	Press the Y= Key	
Step 2	Enter the 1 st equation into Y1	
Step 3	Enter the 2 nd equation into Y2	
Step 4	2 nd Trace (Calc menu)	
Step 5	Press the #5 key(intersect)	
Step 6	Use left & right arrows to get close to the P.O.I.Hit enter three times.	
Step 7	 Repeat Steps 4,5 & 6 to determine the 2nd P.O.I. The P.O.I's (solutions) should be written in (x, y) form. 	

Calculator strategy: You can also check the table of values to see if any points are in common. Look for the same y-values. This will only work for integers & not decimals.