UNIT 6 - STUDY GUIDE – FUNCTIONS

Relation: is a set of ordered pairs- coordinates (x,y)

Domain: is the set of all the 1 st elements (x-values)		Range: is the set of all the 2 nd elements (y-values)	
-independent variable –input		-dependent variable-output	
{ (1,2), (3,4), (5,6) }	Domain {1, 3, 5}	{ (1,2), (3,4), (5,6) }	Range {2, 4, 6}

A **Function** is a relation in which **no two ordered pairs** have the same 1st element (x-value)

- The x-values DO NOT repeat
- It passes the vertical line test

Vertical Line Test: If any vertical line passes through more than one point of the graph, then that relation is not a function.

FOUR TYPES OF FUNCTIONS

FUNCTION NOTATION

**** f**(**x**) just means y!

 $f(#) \rightarrow plug # in for x$

 $f(x) \rightarrow plug \# in \text{ for } y$

Algebraically Evaluating	Graphically Evaluating	
Given: The function $f(x) = x + 3$	Given this graph of the function $f(x) = x + 3$	
a) Find $f(2)$ y = (2) + 3 y = 5 b) Find x when $f(x) = 7$ 7 = x + 3 -3 = -3 4 = x	Find the following: a) $f(-1)$ means x = -1 y = 2 b) x when $f(x) = 0$ means y = 0 x = -3	
	** Given x-value: looking for y (up/down) ** Given y-value: looking for x (left/right)	

Examples

