Unit 5 Study Guide Sequences \& Exponential Function

Arithmetic Sequences- Each term is determined by adding a common difference.

- Common difference ($\mathrm{d}=a_{2}-a_{1}$)
- Arithmetic sequence graph linear patterns

Arithmetic Explicit Formula

$$
a_{n}=a_{1}+(n-1) d
$$

*this formula will be given to you on the Regents!
Explicit Formula: This formula allows you the find the nth term of a sequence of any \# term.
$a_{n}=$ nth term
$a_{1}=$ the $1^{\text {st }}$ term
$\mathrm{n}=$ number of the term
$\mathrm{d}=$ common difference $\left(a_{2}-a_{1}\right)$
Example of Arithmetic Sequence
Given the arithmetic sequence $3,5,7,9 \ldots$
a) Write an explicit formula for this arithmetic sequence.

$$
\begin{array}{lr}
a_{n}=a_{1}+(n-1) d & a_{1}=3 \\
a_{n}=3+(n-1) 2 & d=2 \\
a_{n}=3+2 n-2 & \\
a_{n}=2 n+1 &
\end{array}
$$

b) Determine the $100^{\text {th }}$ term in the sequence.

$$
\begin{aligned}
& a_{n}=2 n+1 \\
& a_{100}=2(100)+1 \\
& a_{100}=201
\end{aligned}
$$

Arithmetic Recursive Formula

$$
\begin{gathered}
a_{n}=a_{n-1}+d \\
a_{1}=\#
\end{gathered}
$$

*this formula will not be given to you!
**Don't forget to include the first term!

Given the arithmetic sequence $3,5,7,9$. write a recursive formula.

$$
a_{n}=a_{n-1}+d \quad d=2
$$

$$
\begin{gathered}
a_{1}=3 \\
a_{n}=a_{n-1}+2
\end{gathered}
$$

Write the first four terms of the recursive sequence.

$$
\begin{aligned}
& a_{1}=-4 \\
& a_{n}=a_{(n-1)}+5
\end{aligned}
$$

$a_{2}=-4+5=1$
$a_{3}=1 \overleftarrow{+5=6}$
$a_{4}=6+5=11$
First four terms: $\{-\mathbf{4}, \mathbf{1}, 6,11\}$

Geometric Sequences- Each term is determined by multiplying a common ratio

- Common ratio ($\mathrm{r}=a_{2} \div a_{1}$)
- Geometric sequence graph exponential patterns

Geometric Explicit Formula

$$
a_{n}=a_{1} r^{n-1}
$$

Explicit Formula: This formula allows you the find the nth term of a sequence of any \# term.

$$
\begin{aligned}
& a_{n}=\text { nth term } \\
& a_{1}=\text { the } 1^{\text {st }} \text { term } \\
& \mathrm{n}=\text { number of the term } \\
& \mathrm{r}=\text { common ratio }\left(a_{2} \div a_{1}\right)
\end{aligned}
$$

Example of Geometric Sequence
a) Given the geometric sequence $2,6,18,54 \ldots$

$$
\begin{aligned}
& a_{n}=a_{1} r^{n-1} \\
& a_{n}=2(3)^{n-1}
\end{aligned}
$$

b) Determine the $7^{\text {th }}$ term of the sequence

$$
\begin{aligned}
& a_{7}=2(3)^{7-1} \\
& a_{7}=2(3)^{6} \\
& a_{7}=1458
\end{aligned}
$$

$$
\begin{gathered}
a_{n}=r * a_{n-1} \\
a_{1}=\#
\end{gathered}
$$

*this formula will not be given to you!
**Don't forget to include the first term!

Given the geometric sequence $2,6,18,54 \ldots$

$$
a_{n}=r * a_{n-1}
$$

$$
r=3
$$

$$
a_{n}=3 * a_{n-1}
$$

$$
a_{1}=2
$$

Write the first four terms of the recursive sequence.

$$
\begin{aligned}
& a_{1}=3 \\
& a_{n}=5 * a_{(n-1)}
\end{aligned}
$$

$$
a_{1}=\Downarrow
$$

$$
a_{2}=3 * 5=15
$$

$$
a_{3}=15 * 5=75
$$

$$
a_{4}=75 * 5=375
$$

First four terms: $\{3,15,75,375\}$

Growth Formula
 $$
Y=A(1+r)^{t}
$$

$\mathbf{Y}=$ final amount
$\mathbf{A}=$ initial amount
$\mathbf{r}=$ rate as a decimal
$t=$ time

