Name: \qquad

UNIT 5

Date:

LESSON 6

DO NOW: Which of the following sequences is a geometric sequence?
(a) $\{2,4,6,8,10, \ldots\}$
(b) $\{2,4,8,16,32, \ldots\}$
(c) $\{2,4,7,11,16, \ldots\}$
(d) $\{2,8,14,20,26, \ldots\}$

AIM: How can we use the explicit formula to find the nth term in a geometric sequence?

Geometric Formula to find the $\boldsymbol{n}^{\text {th }}$ term

$$
a_{n}=a_{1} r^{n-1}
$$

Vocabulary of Sequences $a_{1}=$ the first term in the sequence $a_{n}=$ the $n^{\text {th }}$ term in the sequence
$n=$ the term number
$r=$ the common ratio

*You do NOT have to memorize! It's on the reference sheet!

1. Given the geometric sequence $2,6,18,54 \ldots \ldots$.

$$
\begin{aligned}
& a_{1}= \\
& r=
\end{aligned}
$$

a) Write the explicit formula
b) Use the explicit formula to find the $12^{\text {th }}$ term.

Sequence term	a_{n}
\mathbf{a}_{1}	
\mathbf{a}_{2}	
\mathbf{a}_{3}	
\mathbf{a}_{4}	
\mathbf{a}_{5}	

2. Given the geometric sequence $160,80,40 \ldots \ldots$
a) Write the explicit formula

$$
\begin{aligned}
& \mathrm{a}_{1}= \\
& \mathrm{r}=
\end{aligned}
$$

Sequence term	a_{n}
\mathbf{a}_{1}	
\mathbf{a}_{2}	
\mathbf{a}_{3}	
\mathbf{a}_{4}	
\mathbf{a}_{5}	

To summarize the process of writing a recursive formula for a geometric sequence:

1. Determine if the sequence is geometric (Do you multiply or divide the same amount from one term to the next?) 2. Find the common ratio. (The number you multiply or divide.)
2. Create a recursive formula by stating the first term, and then stating the formula to be the common ratio times the previous term.

3. Consider the sequence following: $3,9,27,81 \ldots$
a) Write a recursive formula for the sequence.
b) Write an explicit formula for the sequence.
c) Use the explicit formula to find the $10^{\text {th }}$ term.
4. Consider the sequence following: $4,8,16,32,64 \ldots$
a) Write a recursive formula for the sequence.
b) Write an explicit formula for the sequence.
c) Use the explicit formula to find the $16^{\text {th }}$ term.
***STRATEGIES for answering multiple choice questions below:

- First determine whether the sequence is arithmetic or geometric.
- Then write down the sequence formula from the reference sheet.
- Eliminate choices that do not resemble the formula!
- If needed, plug in terms into the choices left over!

$$
\begin{gathered}
a_{n}=a_{1} r^{n-1} \\
\mathrm{OR} \\
a_{n}=a_{1}+(n-1) d
\end{gathered}
$$

5. A sequence has the following terms: $a_{1}=4$, $a_{2}=10, a_{3}=25, a_{4}=62.5$. Which formula represents the nth term in the sequence?
1) $a_{n}=4+2.5 n$
2) $a_{n}=4+2.5(n-1)$
3) $a_{n}=4(2.5)^{n}$
4) $a_{n}=4(2.5)^{n-1}$
6. What is a formula for the nth term of sequence B shown below?

$$
B=10,12,14,16, \ldots
$$

1) $b_{n}=8+2 n$
2) $b_{n}=10+2 n$
3) $b_{n}=10(2)^{n}$
4) $b_{n}=10(2)^{n-1}$
a) Write the explicit formula for the sequence.

$$
a_{n}=a_{1} r^{n-1}
$$

b) Use the explicit formula to find the $17^{\text {th }}$ term.
c) Write a recursive formula for the sequence.

