Do Now:

a. Identify the $1^{\text {st }}$ term and the common difference for the sequence below:

$$
7,14,21,28 \ldots . .
$$

b. Write an explicit formula for the sequence.
c. Using the formula, find the 8 th term of the sequence.

AIM: RECURSIVE FORMULA

1. Could you state the term values for terms five through eight without using the formula?
$7,14,21,28 \ldots$.

Recursive Formula

- Dependent on the previous term to develop a pattern.
- Gives you the $n^{\text {th }}$ term of a sequence using the term before, $n-1$.
- To find a term using a recursive formula you need the previous term to find the next one.
$a_{1}=$ the first term in the sequence
$a_{n}=$ the $n^{\text {th }}$ term in the sequence
$a_{n-1}=$ the term before the $n^{t h}$ term
$n=$ the term number
$d=$ the common difference.

2. Use the following to find the first 4 terms of the sequence:

$$
\begin{aligned}
& a_{1}=2 \\
& a_{n}=a_{n 1}+3
\end{aligned}
$$

3. Write the first 5 terms of the recursive sequence:

$$
\begin{aligned}
& a_{1}=-4 \\
& a_{n}=a_{n-1}+5
\end{aligned}
$$

4. Write the first 4 terms of the recursive sequence:

$$
\begin{aligned}
& a_{1}=12 \\
& a_{n+1}=a_{n}+2
\end{aligned}
$$

To summarize the process of writing a recursive formula for an arithmetic sequence:

1. Determine if the sequence is arithmetic (Do you add or subtract the same amount from one term to the next?)
2. Find the common difference. (The number you add or subtract.)
3. Create a recursive formula by stating the first term, and then stating the formula to be the previous term plus the common difference.
4. State recursive formula for this sequence: $7,11,15,19,23, \ldots$
5. State recursive formula for this sequence: $3,5,7,9,11, \ldots$
6. State recursive formula for this sequence: $32,38,44,50, \ldots$
7. Consider the sequence following: $35,30,25,20,15,10, \ldots$
a) Write a recursive formula for the sequence.
b) Write an explicit formula for the sequence.
c) Find the 18th term. Which formula is easier to use? Why?
