Name_			
Unit 2			

Do Now:

	s review your <u>inverse</u> operations: (Remember inverse operations are the oppose How do you undo addition?	ite)
b.	How do you undo subtraction?	
c.	How do you undo multiplication?	
d.	How do you undo division?	
e.	How do you undo "squaring" (exponent of 2)?	
f.	If you are square rooting you would?	

AIM: SOLVING LITERAL EQUATIONS

_____ **Define Literal:** _____ Literally it's TIME to get LITERAL!

But first, let's review order of operations when working with literal equations:

<u>First</u> undo ______ and _____

Second und_____ and _____

Third undo exponents or radicals.

Related Equations	Literal Equation
1. Solve $x - 5 = 9$ for <i>x</i> .	2. Solve $x - a = b$ for x .
3. Solve 2x = 7 for <i>x</i> .	4. Solve $ax = b$ for x .
5. Solve $2x - 6 = 10$ for <i>x</i> .	6. Solve $ax - b = c$ for x .
7. Solve $3x + 6 = 30$ for <i>x</i> .	8. If $3ax + b = c$, then <i>x</i> equals

- 9. Michael borrows money from his uncle, who is charging him simple interest using the formula I = Prt. To figure out what the interest rate, *r*, is, Michael rearranges the formula to find *r*. His new formula is *r* equals
- 1) $\frac{I-P}{t}$
- 2) $\frac{P-I}{t}$
- 3) $\frac{I}{Pt}$
- 4) $\frac{Pt}{I}$

10. The distance a free falling object has traveled can be modeled by the equation , $d = \frac{1}{2} at^2$

where a is acceleration due to gravity and t is the amount of time the object has fallen. What is t in terms of a and d?

1)
$$t = \sqrt{\frac{da}{2}}$$
2)
$$t = \sqrt{\frac{2d}{a}}$$
3)
$$t = \left(\frac{da}{d}\right)^{2}$$
4)
$$t = \left(\frac{2d}{a}\right)^{2}$$

11. If a + ar = b + r, what is *a* expressed in terms of *b* and *r*?

Exit Ticket

The science teacher wrote three equations on a board that relate velocity, v, distance traveled, d, and the time to travel the distance, t, on the board.

$$v = \frac{d}{t} \qquad \qquad t = \frac{d}{v} \qquad \qquad d = vt$$

Would you need to memorize all three equations or could you just memorize one? Explain your reasoning.

Name_____

Exit Ticket

The science teacher wrote three equations on a board that relate velocity, v, distance traveled, d, and the time to travel the distance, t, on the board.

$$v = \frac{d}{t}$$
 $t = \frac{d}{v}$ $d = vt$

Would you need to memorize all three equations or could you just memorize one? Explain your reasoning.