## Things to Know for the Algebra I Regents

## Types of Numbers:

Real Number: any number you can think of (integers, rational, irrational)
Imaginary Number: square root of a negative number
Integers: whole numbers (positive, negative, zero)

Rational: whole numbers; perfect squares; can be written as a fraction; repeating decimals; terminating decimals Irrational: cannot be written as a fraction; non-perfect squares; non-repeating decimals; non-terminating decimals

Properties of Real Numbers: (only work with addition and multiplication)

Commutative: change order of terms
Ex: $a+b+c=a+c+b$

$$
\mathrm{a}(\mathrm{bc})=(\mathrm{bc}) \mathrm{a}
$$

Associative: group () differently
Ex: $a+(b+c)=(a+b)+c$ $a(b c)=(a b) c$
Distributive: number outside the () multiplies to every term inside the ()
Ex: $2(x+5)=2 x+2(5)=2 x+10$

Identity: value you start with is the value you end with

Ex: $7+0=7$ $7(1)=7$
Inverse: uses the opposite
Ex: $3+(-3)=0$

$$
3(1 / 3)=1 \rightarrow \text { reciprocal }
$$

Zero: anything multiplied by zero is zero
Ex: $6(0)=0$

Monomials \& Polynomials: $\mathrm{Mono}=1$ term; Poly $=$ binomial ( 2 terms), trinomial ( 3 terms)

| Expression: has no equal sign <br> Coefficient: number in front of a variable | Term: piece of an expression separated by + <br> Constant: numerical term with no variable |
| :---: | :---: |
| Standard Form: like terms combined; highest to lowest exponent <br> Multiplying Variables: add exponents <br> Dividing Variables: subtract exponents | Multiplying Polynomials: double distribute $\text { Ex: } \begin{aligned} & (2 x-6)(x-3) \\ = & 2 x(x-3)-6(x-3) \\ = & 2 x^{2}-6 x-6 x+18 \\ = & 2 x^{2}-12 x+18 \end{aligned}$ |
| Negative Exponents: bring to the denominator \& make them positive | Zero Exponent: will always result in an answer of 1 |
| "From goes first": $\begin{aligned} \text { Ex: } & \quad \text { Subtract } 2 x^{2}+3 x-1 \text { from } x^{2}-5 x \\ & =\left(x^{2}-5 x-7\right)-\left(2 x^{2}+3 x-1\right)=x^{2}-5 x- \end{aligned}$ | $2 x^{2}-3 x+1=-x^{2}-8 x-6$ |

Radicals:radicand = \# under radical sign

| Perfect Squares: variables with even exponents <br> $1,4,9,16,25,36,49,64,81,100,121,144,169, .$. | Simplifying: find the largest perfect square that <br> divides in evenly; perfect squares <br> come out of the radical |
| :--- | :--- |
| Adding/Subtracting: simplify radicand first; <br> $+/-$ coefficients of like radicands | Multiplying/Dividing: $\times / \div$ coefficients; <br> $\times / \div$ radicands; simplify |

Inequalities: variable must be on left side of inequality symbol; $\div$ by negative $\rightarrow$ flip inequality sign

Graphing on a Number Line:
<"less than", shade left, open circle
>"greater than", shade right, open circle
$\leq$ "less than or $=$ to", shade left, closed circle
$\geq$ "greater than or = to", shade right, closed circle
Compound "and" Inequality: shade in between 2 values

Ex:


Interval Notation: (-3, 5]
Set Builder: $\{x$ E R | $-3<x \leq 5\}$

Graphing on Coordinate Grid:
<"less than", shade down, dotted line
>"greater than", shade up, dotted line
$\leq$ "less than or $=$ to", shade down, solid line
$\geq$ "greater than or = to", shade up, solid line
Compound "or" Inequality: shade one way OR
the other; use
union
Ex:

Interval Notation: $(-\infty,-3] \cup(4, \infty)$
Set Builder: $\{x \in R \mid x \leq-3$ or $x>4\}$

## Functions:



Transformations: moving of a parent graph

| Translations: shift or slide | Reflection: flip | Dilation: grow or shrink |
| :--- | :--- | :--- |
| $y=\|x\|+a \quad$ shift up | $y=-\|x\|$ reflect over $x$-axis | $y=a\|x\|$ |
| $y=\|x\|-a \quad$ shift down |  | $a>1 \rightarrow$ vertical stretch <br> $y=\|x+a\|$ <br> (narrows) <br> $y=\|x-a\|$ <br> shift left |
|  |  | $0<a<1 \rightarrow$ vertical shrink <br> (widens) |

Linear Functions: $m=$ slope $b=y$-intercept

| Slope-intercept Form: Point-slope Fo <br> $y=m x+b$ <br> $y-y_{1}=m(x-x$  | Slope/ARC Formula: $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ "y's go up high" |
| :---: | :---: |
| Vertical Lines: pass through x -axis $\rightarrow \mathrm{x}=\#$; undefined slope | Horizontal Lines: pass through y-axis $\rightarrow \mathrm{y}=\#$; zero slope |
| Parallel Lines: have equal slopes; never intersect; symbol: // | Perpendicular Lines: have negative reciprocal slopes; intersect and form a right angle; symbol: $\perp$ |
| Writing eqt given slope and 1 point: Plug in m , x , and y . Solve for b . Rewrite equation with new $b$ value. | Writing eqt given 2 points: <br> Find $m$ using slope formula. Plug in $m, x$, and $y$. <br> Solve for b . Rewrite equation with new b value. |

Linear Systems: Solution = POI (Point of Intersection)

Three Types of Graphs:

1) Consistent $=$ lines intersect at one point; have different slopes
2) $\underline{\text { Inconsistent }}=$ lines do not intersect; have same slope
3) Dependent $=$ lines are identical and intersect at infinite points; have same slope \& y-int

Algebraically:

1) Substitution Method

- one eqt has a variable alone; plug this expression into other equation

2) Addition/Elimination Method

- like terms stacked on top of each other; need opposite sign coefficients

Word Problems: the value they tell you the least about is "x"

| Perimeter: sum of all side lengths <br> Distance $=$ rate(time) | Area: <br> Rectangle: $\mathrm{A}=$ length(width) <br> Square: $\mathrm{A}=(\text { side })^{2}$ |
| :---: | :---: |
| Consecutive Integers: | Consecutive Even/Odd Integers: |
| Let 1st CI = x | Let 1st CEI/COI = x |
| Let $2 \mathrm{nd} \mathrm{CI}=\mathrm{x}+1$ | Let 2nd CEI/COI $=\mathrm{x}+2$ |
| Let 3rd CI $=\mathrm{x}+2$ | Let $3 \mathrm{rd} \mathrm{CEI} / \mathrm{COI}=\mathrm{x}+4$ |

Exponential Functions: Growth uses addition; decay uses subtraction
Compound Interest Formula: $\mathrm{A}=\mathrm{P}\left(1 \pm \frac{r}{n}\right)^{\text {nt }}$

$$
\begin{aligned}
& A=\text { amount accumulated } \\
& r=\text { rate (no percents) } \\
& t=\text { time }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}=\text { initial } / \text { principle amount } \\
& \mathrm{n}=\text { number of times compounded per year } \\
& \quad(\text { annually }=1 ; \text { semi }=2 ; \text { quarterly }=4 ; \text { monthly }=12)
\end{aligned}
$$

Quadratics: solutions $=$ roots $=x$-intercepts $=$ zeroes; shape $=$ parabola

| Standard form: $y=a x^{2}+b x+c$ | Vertex form: <br> vertex |
| :--- | :--- |

## Graphing: make sure to include table of values, labels, $1 \mathrm{~B}=1 \mathrm{U}$

1) Axis of Symmetry (AOS): $x=\frac{-b}{2 a}$
2) Vertex/Turning Point (TP): plug in $x$ and solve for $y$
3) End Behavior: leading coefficient positive $\rightarrow$ faces upward; vertex is a minimum leading coefficient negative $\rightarrow$ faces downward, vertex is a maximum
4) Y-intercept: where $x=0$
5) Roots/x-intercepts: where $y=0$

## Three Ways to Solve for Solutions:

1) Factoring: T-Chart and solve for $x$

GCF: Largest coefficient that divides into all terms evenly; smallest exponent on variable

$$
\begin{aligned}
& 5 x+10=0 \\
& 5(x+2)=0 \\
& x=-2 \quad \text { Solution Set: }\{-2\}
\end{aligned}
$$

DOTS: Both terms must be perfect squares; subtraction in the middle
$x^{2}=16$
$x^{2}-16=0$
$(x+4)(x-4)=0$
$x=-4$ and $x=4$ Solution Set: $\{ \pm 4\}$
Trinomial: If last sign is pos, signs in blanks are same; if last sign is neg, signs in blanks are dif.

$$
\begin{aligned}
& \mathrm{x}^{2}+5 \mathrm{x}+6=0 \\
& \mathrm{x}^{2}+\underline{3 \mathrm{x}}+\underline{\mathrm{x}}+6=0 \\
& \mathrm{x}(\mathrm{x}+3)+2(\mathrm{x}+3)=0 \\
& (\mathrm{x}+3)(\mathrm{x}+2)=0 \\
& \mathrm{x}=-3 \text { and } \mathrm{x}=-2 \quad \text { Solution Set: }\{-3,-2\}
\end{aligned}
$$

2) Quadratic Formula:standard form = zero; express in simplest radical form
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
3) Completing the Square: half of " $b$ " value, then square it
$x^{2}-14 x+1=0$
$x^{2}-14 x+(-7)^{2}=-1+(-7)^{2}$
$x^{2}-14 x+49=-1+49$
$(x-7)^{2}=48$
$x-7= \pm \sqrt{48}$
$x=7 \pm 4 \sqrt{3} \rightarrow$ roots are real, irrational, unequal
$\underline{\text { Real-Life Word Problems: }}$ time $=x$ value; height $=y$ value
Time object reaches max height: AOS
Maximum height: $y$-value of vertex
Time to hit oround• ront (use amadratic formmla)

Quadratic/Linear Systems: solution = POI (Point of Intersection) - one, two, or no solutions
Algebraically:

1) Both equations must be in standard form ( $y=$ )
2) Set expressions equal to each other and set = zero
3) Solve for $x$ (use factoring, quadratic formula, or completing the square)
4) Substitute $x$ value(s) into original equation to find $y$ value(s)
5) State your answers as coordinate points ( $x, y$ )

Sequences: A list of numbers that follows a specific pattern.

| Arithmetic: | Geometric: |
| :--- | :--- |
| Uses addition and a common difference $(\mathrm{d})$. <br> To find d, subtract 2nd term and 1st term. <br> Represented by a linear function. | Uses multiplication and a common ratio (r). <br> If the numbers are getting bigger, $r$ is a whole \#. <br> If the numbers are getting smaller, $r$ is a fraction. <br> To find $r$, divide 2nd term by 1st term. <br> Represented by an exponential function. |
| Explicit Formulas: <br> Arithmetic: $a_{n}=a_{1}+(n-1)(d)$ <br> Geometric: $a_{n}=a_{1}(r)^{n-1}$ | Recursive Formulas: use previous term; <br> must state 1 st term <br> Ex: $2,4,6,8 \ldots$ <br> $a_{n}=a_{n-1}+2$ when $a_{1}=2$ |

Statistics:biased favors one thing over another

| Quantitative = things that can be counted | $\underline{\text { Univariate }=1 \text { set of data }}$Qualitiative $=$ characteristics that can't be counted <br> Bivariate $=2$ sets of data |
| :--- | :--- |
| Statistical Summary Values: Calc: STAT $\rightarrow$ EDIT $\rightarrow$ type in list $\rightarrow$ STAT $\rightarrow$ CALC $\rightarrow$ 1VAR- <br> STAT L1 <br> 1) Mean: average; add up numbers \& divide by \# of values <br> 2) Median: middle number after numbers are in numerical order <br> 3) Mode: number that appears the most (bimodal = more than 1 mode) <br> 4) Range: maximum - minimum <br> 5) IQR (Interquartile Range): Q3 - Q1 |  |
| Finding an Outlier: | Types of Data Distributions: <br> 1)Symmetrical = typical measure is mean; <br> mean/median close in value <br> To the Left: Q1 - (1.5(IQR)) <br> To the Right: Q3 + (1.5(IQR)) |

Linear Regression: Calc: STAT $\rightarrow$ EDIT $\rightarrow$ type in lists $\rightarrow$ STAT $\rightarrow$ CALC $\rightarrow$ \#4 L1, L2

Correlation Coefficient (r):
shows how strong relationship is between 2 sets of data
$\mathrm{r}= \pm 1 \rightarrow$ strong relationship
$\mathrm{r}=0 \rightarrow$ no relationship
To turn "r" on: 2ND $\rightarrow 0 \rightarrow$ DIAGNOSTICS ON
Scatter Plot: relates bivariate data; shows
correlation (which does not indicate causation)

Interpolate: predict what occurs with a value that is within range of given values

Extrapolate: predict what occurs with a value that is outside range of given values

Residual Plot: shows distance values are from line of best fit
Residual $=$ actual value - nredicted value

