Things to Know for the Algebra I Regents

	Types of Numbers:	
Real Number: any number you can think of		Rational: whole numbers; perfect squares; can
	(integers, rational, irrational)	be written as a fraction; repeating
	Imaginary Number: square root of a negative	decimals; terminating decimals
	number	Irrational: cannot be written as a fraction;
	Integers: whole numbers (positive, negative,	non-perfect squares; non-repeating
	zero)	decimals; non-terminating decimals

Properties of Real Numbers: (only work with addition and multiplication)

T

Commutative: change order of terms	<u>Identity</u> : value you start with is the value you
Ex: $a + b + c = a + c + b$	end with
a(bc) = (bc)a	Ex: $7 + 0 = 7$
Associative: group () differently	7(1) = 7
Ex: $a + (b + c) = (a + b) + c$	Inverse: uses the opposite
a(bc) = (ab)c	Ex: $3 + (-3) = 0$
<u>Distributive</u> : number outside the () multiplies to	$3(^{1}/_{3}) = 1 \rightarrow \text{reciprocal}$
every term inside the ()	Zero: anything multiplied by zero is zero
Ex: $2(x + 5) = 2x + 2(5) = 2x + 10$	Ex: $6(0) = 0$

Monomials & Polynomials: Mono = 1 term; Poly = binomial (2 terms), trinomial (3 terms)

Wohomans & Folynomians, Woho Frenk, Foly Smonnar (2 terms), umennar (5 terms)			
Expression: has no equal sign	<u>Term</u> : piece of an expression separated by $+$		
<u>Coefficient</u> : number in front of a variable	Constant: numerical term with no variable		
Standard Form: like terms combined;	Multiplying Polynomials: double distribute		
highest to lowest exponent	Ex: $(2x - 6)(x - 3)$		
Multiplying Variables: add exponents	= 2x(x - 3) - 6(x - 3) = 2x ² - 6x - 6x + 18 = 2x ² - 12x + 18		
Dividing Variables: subtract exponents	$2\Lambda = 12\Lambda + 10$		
Negative Exponents: bring to the denominator & make them positive	Zero Exponent: will always result in an answer of 1		
"From goes first":			
Ex: Subtract $2x^2 + 3x - 1$ from $x^2 - 5x - 7$			
$= (x^{2} - 5x - 7) - (2x^{2} + 3x - 1) = x^{2} - 5x - 7 - 2x^{2} - 3x + 1 = -x^{2} - 8x - 6$			

Radicals:radicand = # under radical sign

Perfect Squares: variables with even exponents 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169,	Simplifying: find the largest perfect square that divides in evenly; perfect squares come out of the radical
Adding/Subtracting: simplify radicand first;	<u>Multiplying/Dividing</u> : ×/÷coefficients;
+/-coefficients of like radicands	×/÷radicands; simplify

Inequalities: variable must be on left side of ine	equality symbol; \div by negative \rightarrow flip inequality sign
--	--

incuantics. variable must be on felt side of mequ	
Graphing on a Number Line:	Graphing on Coordinate Grid:
<"less than", shade left, open circle	<"less than", shade down, dotted line
>"greater than", shade right, open circle	>"greater than", shade up, dotted line
	-
\leq "less than or = to", shade left, closed circle	\leq "less than or = to", shade down, solid line
>"greater than or = to", shade right, closed circle	>"greater than or = to", shade up, solid line
	= Sicular than of to, shade up, solid file
Compound "and" Inequality: shade in between	Compound "or" Inequality: shade one way OR
2 values	the other; use
$\leftarrow \frown \rightarrow$	union
	symbol for int. not.
Ex: -3 5	
	Ex: -3 4
Interval Notation: (-3, 5]	
	Interval Notation: $(-\infty, -3] \cup (4, \infty)$
Set Builder: $\{x \in R \mid -3 < x \le 5\}$	
	Set Builder: $\{x \in R \mid x < -3 \text{ or } x > 4\}$

Functions:

runctions.					1
<u>Function</u> : x-values	can't repeat; gra	aph will 🛛 🛛 🗌 🛽 🗌	nterval Notation	<u>1</u> :	
pass ver	tical line test	() means unequa	al/open circles	
1-1 Function: x-values AND y-values can't repeat] means equal/o	-	∞ always	
		gets ()			
		ε			
Domain: List of x-v	values (input va	luog)			
Domain. List of X-V	alues (input va	liues)	f(x)	у	
	1.5.7				
	val Notation:				
	$\{x \in R \mid x \ge -1\}$				
"x is an eler	ment of all real	#'s such		/	
that"					
			-		
Range: List of y-values (output values)		lues)		$ \Psi $	
	× 1	,			
Ex: Interval Nota	ation: $(-\infty, 5]$				
	$\{y \in R \mid y \leq 5\}$	1			
	ment of all real				
that"	inent of all real				
that					
Parent Functions:					
		N # 1		1	
+ /	1		1/	\ 1 /	1
1	1/		1	$\langle 1 \rangle$	
	1114 1111	+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++	*** (1111)
/ -	/+	-	-		-
	11	-	-	1	-
Linear	Cubic	Absolute Value	Exponential	Quadratic	Square Root
Linical	Cuoit		Exponential	Zuuuiuiio	Square Root

Transformations: moving of a parent graph

Translations: shift or slide	Reflection: flip	Dilation: grow or shrink
y = x + a shift up y = x - a shift down y = x + a shift left y = x - a shift right	y = - x reflect over x-axis	y = a x a > 1 \rightarrow vertical stretch (narrows) 0 < a < 1 \rightarrow vertical shrink (widens)

Linear Functions: m = slope b = y-intercept

Linear Functions. In Stope of y intercept				
Slope-intercept Form:	Point-slope For	<u>rm</u> :	Slope/ARC Formula:	
y = mx + b	$y - y_1 = m(x - $	x ₁)	$m = \frac{y_2 - y_1}{x_2 - x_1}$ "y's go up high"	
<u>Vertical Lines</u> : pass through x-axis $\rightarrow x = #$; undefined slope		<u>Horizontal Lines</u> : pass through y-axis $\rightarrow y = #$; zero slope		
Parallel Lines: have equal slopes; never intersect; symbol: //		Perpendicular Lines: have negative reciprocal slopes; intersect and form a right angle; symbol: ⊥		
Writing eqt given slope and 1 point: Plug in m, x, and y. Solve for b. Rewrite equation with new b value.			<u>2 points:</u> e formula. Plug in m, x, and y. ite equation with new b value.	

Linear Systems: Solution = POI (Point of Intersection)

Three Types of Graphs:	Algebraically:	
1) <u>Consistent</u> = lines intersect at one point;	1) <u>Substitution Method</u>	
have different slopes	- one eqt has a variable alone; plug this	
2) <u>Inconsistent</u> = lines do not intersect; have	expression into other equation	
same slope	2) Addition/Elimination Method	
3) <u>Dependent</u> = lines are identical and intersect	- like terms stacked on top of each other;	
at infinite points; have same slope & y-int	need opposite sign coefficients	

Word Problems: the value they tell you the least about is "x"

Perimeter: sum of all side lengths	Area:
Distance = rate(time)	Rectangle: $A = length(width)$ Square: $A = (side)^2$
Consecutive Integers:	Consecutive Even/Odd Integers:
Let 1st $CI = x$	Let 1st CEI/COI = x
Let $2nd CI = x + 1$	Let 2nd CEI/COI = $x + 2$
Let $3rd CI = x + 2$	Let $3rd CEI/COI = x + 4$

Exponential Functions: Growth uses addition; decay uses subtraction

<u>Compound Interest Formula</u> : $A = P(1 \pm \frac{r}{n})^{nt}$		
A = amount accumulated	P = initial/principle amount	
r = rate (no percents)	n = number of times compounded per year	
t = time	(annually = 1; semi = 2; quarterly = 4; monthly = 12)	

Quadratics: solutions = roots = x-intercepts = zeroes; shape = parabola

Quadratics: solutions = roots = x-intercepts = zer Standard form: $y = ax^2 + bx + c$	Vertex form: $y = (x - h)^2 + k$ where (h, k) is the	
Standard form. $y = ax + bx + c$	<u>vertex form</u> : $y = (x - h) + k$ where (h, k) is the vertex	
Graphing: make sure to include table of values, la		
1) Axis of Symmetry (AOS): $x = \frac{-b}{2a}$		
2) Vertex/Turning Point (TP): plug in x and solve for y		
3) End Behavior: leading coefficient positive \rightarrow faces upward; vertex is a minimum		
leading coefficient negative \rightarrow faces downward, vertex is a maximum		
4) Y-intercept: where $x = 0$ 5) Ready intercepts: where $y = 0$		
5) Roots/x-intercepts: where $y = 0$		
Three Ways to Solve for Solutions:		
1) Factoring: T-Chart and solve for x		
GCF: Largest coefficient that divides into all	terms evenly; smallest exponent on variable	
5x + 10 = 0		
5(x+2) = 0		
$x = -2$ Solution Set: $\{-2\}$		
DOTS: Both terms must be perfect squares; subtraction in the middle		
$x^2 = 16$		
$x^2 - 16 = 0$		
(x + 4)(x - 4) = 0		
$x = -4$ and $x = 4$ Solution Set: $\{\pm 4\}$	are some if last sign is near signs in blanks are dif	
Trinomial: If last sign is pos, signs in blanks are same; if last sign is neg, signs in blanks are dif. $x^2 + 5x + 6 = 0$		
$x^{2} + 3x + 2x + 6 = 0$		
$\frac{1}{x(x + 3) + 2(x + 3)} = 0$		
(x+3)(x+2) = 0		
$x = -3$ and $x = -2$ Solution Set: {-3	3, -2}	
2) <u>Quadratic Formula</u> :standard form = zero; expre		
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
3) <u>Completing the Square</u> : half of "b" value, then	i square it	
$x^2 - 14x + 1 = 0$		
$x^{2}-14x + (-7)^{2} = -1 + (-7)^{2}$		
$x^2 - 14x + 49 = -1 + 49$		
$(x - 7)^2 = 48$		
$x - 7 = \pm \sqrt{48}$		
$x = 7 \pm 4\sqrt{3} \rightarrow$ roots are real, irrational, unequal		
<u>Real-Life Word Problems</u> : time = x value; height	= y value	

Time object reaches max height: AOS Maximum height: y-value of vertex Time to hit ground: root (use quadratic formula)

Quadratic/Linear Systems: solution = POI (Point of Intersection) - one, two, or no solutions

Algebraically:

- 1) Both equations must be in standard form (y =)
- 2) Set expressions equal to each other and set = zero
- 3) Solve for x (use factoring, quadratic formula, or completing the square)
- 4) Substitute x value(s) into original equation to find y value(s)
- 5) State your answers as coordinate points (x, y)

Sequences: A list of numbers that follows a specific pattern.

Arithmetic:	Geometric:
Uses addition and a common difference (d).	Uses multiplication and a common ratio (r).
To find d, subtract 2nd term and 1st term.	If the numbers are getting bigger, r is a whole #.
Represented by a linear function.	If the numbers are getting smaller, r is a fraction.
	To find r, divide 2nd term by 1st term.
	Represented by an exponential function.
Explicit Formulas:	<u>Recursive Formulas</u> : use previous term;
Arithmetic: $a_n = a_1 + (n - 1)(d)$ Geometric: $a_n = a_1(r)^{n-1}$	must state 1st term
Geometric: $a_n = a_1(r)^{n-1}$	Ex: 2, 4, 6, 8
	$a_n = a_{n-1} + 2$ when $a_1 = 2$

Statistics: biased favors one thing over another

Statistics. Blased lavois ble time over another		
Quantitative = things that can be counted	$\underline{\text{Univariate}} = 1 \text{ set of data}$	
<u>Qualitiative</u> = characteristics that can't be counted	$\underline{\text{Bivariate}} = 2 \text{ sets of data}$	
Statistical Summary Values: Calc: STAT \rightarrow EDIT \rightarrow type in list \rightarrow STAT \rightarrow CALC \rightarrow 1VAR-		
STAT L1		
1) Mean: average; add up numbers & divide by # of values		
2) Median: middle number after numbers are in numerical order		
3) Mode: number that appears the most (bimodal = more than 1 mode)		
4) Range: maximum – minimum		
5) IQR (Interquartile Range): Q3 – Q1		
Finding an Outlier:	Types of Data Distributions:	
	1) Symmetrical = typical measure is mean;	
To the Left: $Q1 - (1.5(IQR))$	mean/median close in value	
	2) Skewed = typical measure is median;	
To the Right: $Q3 + (1.5(IQR))$	mean/median are not close in value	

Linear Regression: Calc: STAT \rightarrow EDIT \rightarrow type in lists \rightarrow STAT \rightarrow CALC \rightarrow #4 L1, L2

<u>Elinear Regression: Care: Still EDII (jpc</u>	
Correlation Coefficient (r):	Interpolate: predict what occurs with a value that
shows how strong relationship is between 2 sets	is within range of given values
of data	
	Extrapolate: predict what occurs with a value that
$r = \pm 1 \rightarrow$ strong relationship	is outside range of given values
$r = 0 \rightarrow$ no relationship	
To turn "r" on: $2ND \rightarrow 0 \rightarrow DIAGNOSTICS ON$	
Scatter Plot: relates bivariate data; shows	Residual Plot: shows distance values are from
correlation (which does not indicate causation)	line of best fit
	Residual = actual value – predicted value