## UNIT 7: FACTORING

## Factoring in Order:

1) GCF - Greatest Common Factor
2) DOTS - Difference of Two Perfect Squares
3) E.T. - Easy Trinomials $(\mathrm{a}=1)$
4) H.T. - Hard Trinomials (a >1)

## GREATEST COMMON FACTOR

$$
3 x^{5}-12 x^{2}
$$

1) Find the GCF and put the GCF in front of one set of ( ). $3 x^{2}()$

Look for a number (biggest \# that goes into all the coefficients), then a variable (lowest exponent).
2) Divide everything by the GCF.
3) Whatever is leftover goes in the ( ). $3 x^{2}\left(x^{3}-4\right)$
4) Check your answer by distributing.

## DIFFERENCE OF TWO PERFECT SQUARES

$$
4 x^{2}-9
$$

1) Make two ( ), one with a plus sign and one with a minus sign. $\quad(+)(-)$
2) Take the square root of the first term and put it in the beginning of each ( ) ( $2 x+)(2 x-)$
3) Take the square root of the second term and put it in the back of each ( ) ( $2 x+3)(2 x-3)$
4) To check, double distribute (shortcut- multiply the $1^{\text {st }}$ terms and the last terms.)

## EASY TRINOMIAL ( $\mathbf{a}=1$ )

$$
x^{2}-3 x-10
$$

1) Make 2 sets of ( ), each with an x in the 1st spot. $\left(\begin{array}{ll}x & )(x)\end{array}\right.$
2) The 1 st sign drops down in the 1 st set of ()$.(x-)(x)$
3) Multiply the given signs in the given problem to find the sign of the 2 nd ( ).

$$
(x-\quad)(x+)
$$

4) Find the factors of the last number that either add or subtract to the middle number. (In this case, we need two numbers that subtract to 3 and multiply to 10) 5 and 2.
5) The bigger number always goes first! $(x-5)(x+2)$
6) Check by Double Distributing.

## HARD TRINOMIAL ( $\mathbf{a}>1$ ) <br> $$
2 x^{2}+5 x-3
$$

1) Multiply the first and last coefficients. ("eyeglasses") so, -6 .
2) Find factors that add or subtract to the middle term and multiply to the product of the first and last coefficients. Subtracts to +5 and multiplies to -6 . So, +6 and -1 .
3) Rewrite the problem with 4 terms. $2 x^{2}+6 x-1 x-3$
4) Factor by "Grouping"- Split problem down the middle.
5) Factor the $1^{\text {st }}$ two terms (GCF). $2 x(x+3)-1(x+3)$
6) Copy and paste the ( ) on the other side.
7) Put the GCF of last two terms in front. $(x+3)(\quad)$
8) Factor using GCF- Your GCF will be a common ( ). $(x+3)(2 x-1)$
