Do Now:

Unit 6

a. Is the accompanying graph a function? Explain why or why not.

- b. State the domain.
- c. State the range.

AIM: Domain & Range (Day 1)

Let's review how to write the domain of number lines in set builder notation and interval notation:

- 1. The accompanying graph shows the heart rate, in beats per minute, of a jogger during a 4-minute interval. What is the **range** of the jogger's heart rate during this interval?
 - (1) 0-4
 - (2) 1-4
 - (3) 0-110
 - (4) 60-110

b. Write the **domain** of the jogger's heart rate in set builder notation and interval notation.

(1)
$$2.5 \le y \le 9.5$$

(2)
$$2.5 \le x \le 9.5$$

(3)
$$0 \le y \le 100$$

(4)
$$1 \le x \le 10$$

b. Write the **domain** of the data in set builder notation

3. The accompanying graph illustrates the presence of a certain strain of bacteria at various pH levels. What is the **range** of this set of data?

(1)
$$5 \le x \le 9$$

(2)
$$5 \le x \le 70$$

(3)
$$0 \le y \le 70$$

(4)
$$5 \le y \le 70$$

b. Write the **domain** of the data in set builder notation

c. Write the **domain** of the data in set interval notation.

4. A meteorologist drew the accompanying graph to show the changes in relative humidity during a 24-hour period in New York City. What is the **range** of this set of data?

$$(1) \ 0 \le y \le 24$$

(2)
$$0 \le x \le 24$$

(3)
$$30 \le y \le 80$$

(4)
$$30 \le x \le 80$$

b. Write the **domain** of the data in set builder notation

c. Write the **domain** of the data in set interval notation.

(2)
$$1,000 \le y \le 1,500$$

$$(3) \ 0 \le x \le 12$$

$$(4) \ 0 \le y \le 12$$

b. Write the range of the function in set builder notation

b. Write the **range** of the function interval notation.

6. The effect of pH on the action of a certain enzyme is shown on the accompanying graph. What is the **domain** of this function?

(2)
$$4 \le y \le 13$$

(3)
$$x \ge 0$$

(4)
$$y \ge 0$$

7. What is the domain of $f(x) = 2^x$?

- (1) all integers
- (2) all real numbers
- (3) $x \ge 0$

(4) $x \le 0$

LESSON 7

HW#

Write the set in set-builder notation.

- 2. Given the following in set-builder notation, express the answer in **interval notation**.
- a. $\{x \mid -5 < x \le 7\}$ b $\{x \mid x > -5\}$ c. x is all reals

Unit 6

- d. $\{x \mid x \le -4 \text{ or } x \ge 6\}$
- 3. Given the following in interval notation, express the answer in **set-builder notation**.
- a. $(-\infty, 4]$

- b. (5,8) c. [2,6) d. $(-\infty,-3] \cup (4,\infty)$
- 4 The graph below shows the average price of gasoline, in dollars, for the years 1997 to 2007.

What is the approximate range of this graph?

- 1) $1997 \le x \le 2007$
- 2) $1999 \le x \le 2007$
- 3) $0.97 \le y \le 2.38$
- 4) $1.27 \le y \le 2.38$
- 5) Write the **domain** in **set builder notation** for the graph in question #4.

6) The accompanying graph shows the elevation of a certain region in New York State as a hiker travels along a trail.

a. What is the **range** of this function?

- (1) $1,000 \le x \le 1,500$
- (3) $0 \le x \le 12$
- (2) $1,000 \le y \le 1,500$
- $(4) \ 0 \le y \le 12$

b. Now write the domain is interval notation.