Name:	
UNIT 5	
* *	,

Date:	
LESSON 5	

Let's Think! What would come next?

Do Now: Find the pattern and fill in the missing numbers.

a) 4, 8, 16, 32, 64, 128

b) 4, 12, 36, 108, -162 486

AIM: GEOMETRIC SEQUENCE

1. Identify a pattern in the sequence and then find the missing terms:

-2000, -1000, -500, -250, -125

Rule: divide by a to get the next term (* multiply by = *)

2. Identify a pattern in the sequence and then find the missing terms:

6, -18, 54, -162, 486

Rule: multiply by -3 to get the next term

In a <u>OPDIMETTIC</u> <u>SEQUENCE</u>, the amount by which the terms change each time is

called the <u>Common</u> <u>ratio</u>. The common ratio is represented by <u>r</u>.

 $\mathbf{r} = \mathbf{a}_2 \div \mathbf{a}_1$

* In a geometric sequence, you are either MULTPLYING or dividing to find the next term!

- 3. Consider a sequence that follows 1, 3,9...
 - a) What is the first term? $()_1 =)$
 - b) What is the common ratio? $Q_{\alpha} = Q_{\beta} = 3 = 3 = 3 = 3$

Term Number "n"	Term		
a,			
aa	3		
a_3	9		
Q ₄	27		

- 4. Consider a sequence that follows 160, 80, 40 ...
 - a) What is the first term? $Q_1 = 160$

* Common mistake r=2

Term Number "n"	Term		
a	160		
as	80		
Q3	40		
Q4	20		
a5	10		

5.	Consider a sequence that follows	1,	5,	25,	125,	625,
----	----------------------------------	----	----	-----	------	------

- a) What is the first term? $Q_1 = 1$
- b) What is the common ratio? $r = \frac{5}{7} = 5$

c) Fill in table.

Term Number "n"	Term
a,	5
Q3	25
<u>Q4</u>	125

* Geometric Sequences follow an <u>exponential</u> pattern!

6. Consider a sequence that follows 81, 27, 9, ...

- a) What is the first term?
- c) Fill in table.

- b) What is the common ratio?
- d) Graph the sequence.

What would the equation of these graphs be? ... Hint: let's use our calculator!

Rows 1, 2, and 3: Find the equation of #5_____

Rows 4, 5, and 6: Find the equation of #6_____

7. Determine whether each sequence is an arithmetic sequence, geometric sequence, or neither. If the sequence is arithmetic or geometric, state the common difference or common ratio.

Sequence	Arithmetic, Geometric, or Neither (Write A,G, or N)	Common difference or Common ratio
A. 1, -4, 16, -64,	G	$\Gamma = \frac{-4}{1} = \boxed{-4}$
B. 108, 66, 141, 99,	N	3
C. -96, -48, -24, -12,	G	$r = \frac{-48}{-96} = \boxed{\frac{1}{a}}$
D. 7, 13, 19, 25,	A	d=13=7=6
E. ₹ 3, 9, 81, 6561,	N	pattern? square term to get next term!

Name:____

EXIT TICKET

1) Consider a sequence that follows 459, 153, 51, ...

a) What is the first term?
$$Q_1 = (459)$$

b) What is the common ratio?
$$r = 15$$
.

3) What type of graph does a **geometric** sequence have?

exponential