AIM: How can create and use the explicit formula to find the "nth" term of an Arithmetic Sequence? ## Explicit Formula $$a_n = a_1 + d(n-1)$$ Vocabulary of Sequences a₁ → First term $a_n \rightarrow nth term$ $n \rightarrow number of terms$ d → common difference is used to define the pattern of sequences. Using the explicit formula you can calculate the value of the - 1. Given the sequence 8, 14, 20, 26, 32 ... - a) Write the explicit formula. $$Q_{0} = Q_{1} + Q_{0} + Q_{0}$$ $$an = 8 + 6(n-1)$$ $$an = 8 + 6n - 6$$ | a _i = | B | |------------------|---| | | | | Sequence
term | a _n | |------------------|----------------| | a ₁ | 8 | | a ₂ | 7 | | аз | 80 | | a ₄ | 3 | | a ₅ | 32 | b) Use the explicit formula to find the 20th term (a₂₀). | 2. | Given the | arithmetic sequence | 18, 23 | , 28, 33, | 48 | |----|-----------|---------------------|--------|-----------|----| a) Write the explicit formula $$an = a_1 + d(n-1)$$ $an = 18 + 5(n-1)$ $an = 18 + 5n - 5$ | a _i = | 18 | |------------------|-------------| | d = | \subseteq | | Sequence
term | an | |-----------------------|----| | a ₁ | 18 | | a ₂ | 23 | | аз | 28 | | a ₄ | 33 | | a ₅ | 48 | b) Use the explicit formula to find the 16^{th} term (a_{16}) . $$n = 16$$ an $= 5n + 13$ a16 = $5(16) + 13$ a16 = 93 16th term is 93 a) Write the explicit formula $$an = a_1 + d(n-1)$$ $$an = 5 - 4(n-1)$$ $$an = 5 - 4n + 4$$ $$an = -4n + 9$$ $$a_{l} = \int_{\mathcal{U}} d = \int_{\mathcal{U}} \mathcal{U}$$ | Sequence
term | an | |------------------|------------| | a ₁ | () | | a ₂ | | | a ₃ | رً)
(ک) | | a ₄ | -7 | | a ₅ | ~]] | b) Use the explicit formula to find the 30^{th} term (a_{30}) . $$n = 30$$ an $= -4n + 9$ $a = 30 = -4(30) + 9$ $a = 30 = -111$ $a = 30 = -111$ - 4. Given the arithmetic sequence 15, 13, 11, 9, 7...... - a) Write the explicit formula $$an = a_1 + d(n-1)$$ $an = 15 + a(n-1)$ $an = 15 + an-a$ $an = an + 13$ | $a_1 =$ | 15 | |---------|----| | d= | -2 | | Sequence
term | a _n | |------------------|----------------| | a ₁ | 15 | | a ₂ | Ŋ | | a ₃ | (| | a ₄ | 9 | | a ₅ | 7 | b) Use the explicit formula to find the 34^{th} term (a_{34}) . $$n = 34$$ $an = 2n + 13$ $a34 = 2(34) + 13$ $a34 = 21$ 5. Use an explicit formula to find out what the 50th term in this sequence would be? an = $$3 + 3(n-1)$$ an = $3 + 3(n-1)$ an = $3 + 3n - 3$ $1 = 3n$ $1 = 3n$ $1 = 3n$ $1 = 3n$ 250=150 **a**5 6. Find the 25^{th} term of the arithmetic sequence in which $a_1=5$ and d=4 sequence in which $$a_1=5$$ and $d=4$ a. 100 a. 100 b. 124 c. 101 $$0 = 25$$ d. 125 a. 125 a. 125 a. 125 b. 124 c. 101 7. Write an equation for the nth term of the arithmetic sequence -7, -2, 3, 8, ... a. $$a_n = n + 5$$ b. $$a_n = 5n - 12$$ d. $$a_n = -7(n+5)$$ c. $a_n = -7n + 12$ $$an = a_1 + d(n-1)$$ $an = 7 + 5(n-1)$ 8. A theater has 60 seats in the first row, 68 seats in the second row, 76 seats in the third row, and so on in the same increasing pattern. If the theater has 10 rows, how many seats are in the 10th row? QQQ = Q + Q(QQQ)