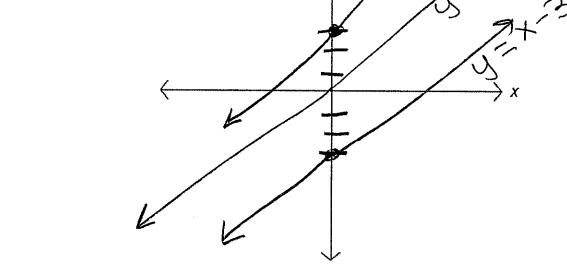
Do Now:


• Reset your calculator (2nd plus sign, #7, enter, #2)

Go to y = and type in x

• What kind of function do you see? _

Sketch the parent function y = x below.

What kind of transformation do you think y = x + 3 will have compared to the parent function?

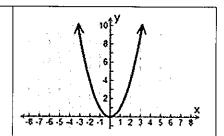
vertical shift

b. What kind of transformation do you think y = x - 3 will have compared to the parent function?

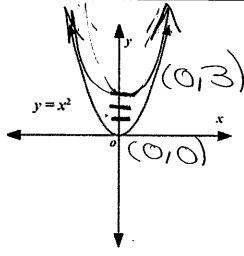
Vertical Shift

c. Write your own example of a linear equation that has a vertical shift.

 $\sqrt{= \times \pm \alpha ny \pm }$

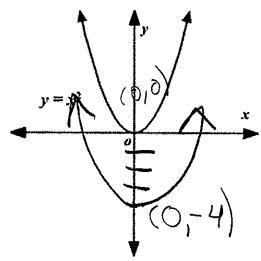

What is a transformation? movement

AIM: TRANSFORMATIONS (DAY 1)


What type of function? Quality

What is the parent equation?

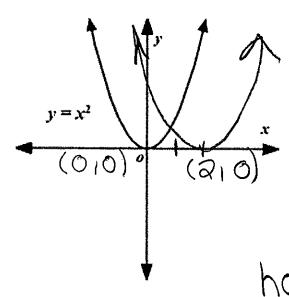
Where is the vertex? (O) O)


1. Sketch $h(x) = x^2 + 3$.

vertical shift

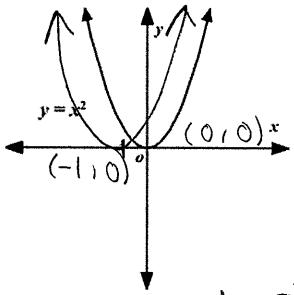
Describe how the graph of $h(x)=x^2+3$ is related to the graph of $f(x)=x^2$:

2. Sketch $g(x)=x^2-4$.


verticalshift

Describe how the graph of $g(x)=x^2-4$ is related to the graph of $f(x)=x^2$:

The graph of $f(x)=x^2\pm k$ is the graph of $f(x)=x^2$ translates vertically

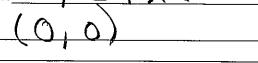

- When k > 0 (positive #'s), the graph translated Vertically up kunit
- When k < 0 (negative #'s), the graph translated Vertically down kund

3. Sketch $k(x) = (x-2)^2$.

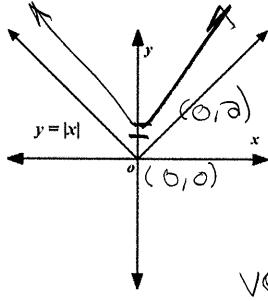
Describe how the graph of $k(x)=(x-2)^2$ is related to the graph of $f(x)=x^2$: Pight aunits

4. Sketch $j(x) = (x+1)^2$.

horizontal shift

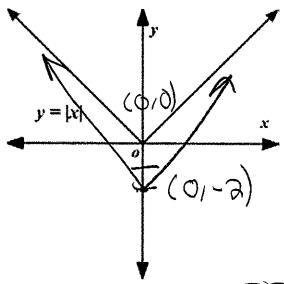

Describe how the graph of $j(x)=(x+1)^2$ is related to the graph of $f(x)=x^2$: 12 f 1 on 2 unit

The graph of $f(x) = (x \pm h)^2$ is the graph of $f(x) = x^2$ horizontal translation

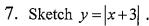

- When h > 0 (positive #'s), the graph is translated NOT/ZONE Shiff | REF
- When h < 0 (negative #'s), the graph is translated

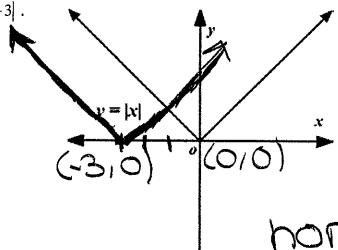
te volue What type of function? What is the parent equation?

Where is the vertex?_

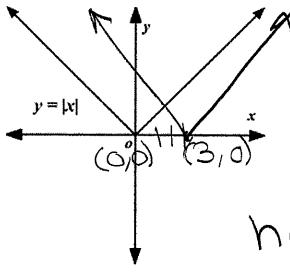

5. Sketch y = |x| + 2.

vertical shift


Describe how the graph of y = |x| + 2 is related to the graph of y = |x|:


6. Sketch y = |x| - 2.

ticalshift


Describe how the graph of y = |x| - 2 is related to the graph of y = |x|:

Describe how the graph of y = |x+3| is related to the graph of y = |x|: | |x| = |x|

8. Sketch y = |x-3|.

Describe how the graph of y = |x-3| is related to the graph of y = |x|:

Translation (Shift) Rules for f(x) graph			
f(x) + k	UP K Units		
f(x) - k	down K units		
f(x + h)	left hunits		
f(x - h)	right h units		

Vertex form of a Quadratic Equation: $y = a(x-h)^2 + k$

- h represents a horizontal shift
- k represents a VRTCa | Shift

Name:	Date:
Unit 6B	Lesson 13

EXIT TICKETDescribe how the graph of each function is related to the graph of $f(x)=x^2$.

a) $g(x) = f(x) + 10$	b) $g(x)=(x-3)^2+2$	c) $g(x) = f(x+3) - 1$	d) $g(x) = (x-2)^2 + 6$
up 10 units	right 3	left 3	right 2
	up 2	down 1	up 6

Name:		Date:
Unit 6B	_	Lesson 13
	EXIT TICKET	

Describe how the graph of each function is related to the graph of $f(x)=x^2$.

a) $g(x) = f(x) + 10$	b) $g(x)=(x-3)^2+2$	c) $g(x) = f(x+3) - 1$	d) $g(x) = (x-2)^2 + 6$
		· ·	

Name:		Date:
Unit 6B		Lesson 13

EXIT TICKET

Describe how the graph of each function is related to the graph of $f(x)=x^2$.

a) $g(x) = f(x) + 10$	b) $g(x)=(x-3)^2+2$	c) $g(x) = f(x+3) - 1$	d) $g(x) = (x-2)^2 + 6$